Machine Learning NG Week 2 Program Code

在Coursera上学习了两周的Machine Learning课程,第二周开始学习使用Octave,以下是Week 2的编程作业代码:

  1. warmUpExercise.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function A = warmUpExercise()
%WARMUPEXERCISE Example function in octave
% A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix

A = [];
% ============= YOUR CODE HERE ==============
% Instructions: Return the 5x5 identity matrix
% In octave, we return values by defining which variables
% represent the return values (at the top of the file)
% and then set them accordingly.

A = eye(5);

% ===========================================
end

  1. plotData.m

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    function plotData(x, y)
    %PLOTDATA Plots the data points x and y into a new figure
    % PLOTDATA(x,y) plots the data points and gives the figure axes labels of
    % population and profit.

    % ====================== YOUR CODE HERE ======================
    % Instructions: Plot the training data into a figure using the
    % "figure" and "plot" commands. Set the axes labels using
    % the "xlabel" and "ylabel" commands. Assume the
    % population and revenue data have been passed in
    % as the x and y arguments of this function.
    %
    % Hint: You can use the 'rx' option with plot to have the markers
    % appear as red crosses. Furthermore, you can make the
    % markers larger by using plot(..., 'rx', 'MarkerSize', 10);

    figure; % open a new figure window

    plot(x, y, 'rx', 'MarkerSize', 10); % Plot the data
    ylabel('Profit in $10,000s'); % Set the y−axis label
    xlabel('Population of City in 10,000s'); % Set the x−axis label

    % ============================================================
    end

  2. computeCost.m

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    function J = computeCost(X, y, theta)
    %COMPUTECOST Compute cost for linear regression
    % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
    % parameter for linear regression to fit the data points in X and y

    % Initialize some useful values
    m = length(y); % number of training examples

    % You need to return the following variables correctly
    J = 0;

    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    % You should set J to the cost.

    temp = sum((X * theta - y).^2);
    J = temp / (2 * m);

    % =========================================================================
    end

  3. gradientDescent.m

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    % theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
    % taking num_iters gradient steps with learning rate alpha

    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);

    for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    % theta.
    %
    % Hint: While debugging, it can be useful to print out the values
    % of the cost function (computeCost) and gradient here.
    %

    tempTheta = theta;

    theta(1) = tempTheta(1) - alpha / m * sum(X * tempTheta - y);
    theta(2) = tempTheta(2) - alpha / m * sum((X * tempTheta - y) .* X(:,2));

    % ============================================================
    % Save the cost J in every iteration
    J_history(iter) = computeCost(X, y, theta);
    end
    end

  4. featureNormalize.m

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    function [X_norm, mu, sigma] = featureNormalize(X)
    %FEATURENORMALIZE Normalizes the features in X
    % FEATURENORMALIZE(X) returns a normalized version of X where
    % the mean value of each feature is 0 and the standard deviation
    % is 1. This is often a good preprocessing step to do when
    % working with learning algorithms.

    % You need to set these values correctly
    X_norm = X;
    mu = zeros(1, size(X, 2));
    sigma = zeros(1, size(X, 2));

    % ====================== YOUR CODE HERE ======================
    % Instructions: First, for each feature dimension, compute the mean
    % of the feature and subtract it from the dataset,
    % storing the mean value in mu. Next, compute the
    % standard deviation of each feature and divide
    % each feature by it's standard deviation, storing
    % the standard deviation in sigma.
    %
    % Note that X is a matrix where each column is a
    % feature and each row is an example. You need
    % to perform the normalization separately for
    % each feature.
    %
    % Hint: You might find the 'mean' and 'std' functions useful.
    %
    featureNumber = size(X, 2);
    for i = 1 : featureNumber
    mu(i) = mean(X(:,i)); %计算每个特征的平均值
    sigma(i) = std(X(:,i)); %计算每个特征的标准差
    X_norm(:,i) = (X(:,i) - mu(i)) / sigma(i);
    end
    % ============================================================
    end

  5. computeCostMulti

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    function J = computeCostMulti(X, y, theta)
    %COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
    % J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
    % parameter for linear regression to fit the data points in X and y

    % Initialize some useful values
    m = length(y); % number of training examples

    % You need to return the following variables correctly
    J = 0;

    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    % You should set J to the cost.

    temp = sum(((X * theta - y).^2));
    J = 1 / (2*m) * temp;

    % =========================================================================
    end

  6. gradientDescentMulti.m

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENTMULTI Performs gradient descent to learn theta
    % theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
    % taking num_iters gradient steps with learning rate alpha

    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);

    for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    % theta.
    %
    % Hint: While debugging, it can be useful to print out the values
    % of the cost function (computeCostMulti) and gradient here.
    %

    tempTheta = theta;
    featureNumber = size(X,2);
    for i = 1 : featureNumber
    theta(i) = tempTheta(i) - alpha / m * sum((X * tempTheta - y) .* X(:,i));
    end
    % ============================================================
    % Save the cost J in every iteration
    J_history(iter) = computeCostMulti(X, y, theta);

    end
    end

  7. normalEqn.m

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    function [theta] = normalEqn(X, y)
    %NORMALEQN Computes the closed-form solution to linear regression
    % NORMALEQN(X,y) computes the closed-form solution to linear
    % regression using the normal equations.

    theta = zeros(size(X, 2), 1);

    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the code to compute the closed form solution
    % to linear regression and put the result in theta.
    %
    % ---------------------- Sample Solution ----------------------

    theta = (X' * X) \ X' * y;

    % -------------------------------------------------------------
    % ============================================================
    end

文章目录
,